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SUMMARY

Dmitrienko et al. [1] proposed a tree gatekeeping procedure for testing logically related hypotheses in
hierarchically ordered families which uses weighted Bonferroni tests for all intersection hypotheses in a
closure method [3]. An algorithm was given to assign weights to the hypotheses for every intersection.
The purpose of this note is to show that any weight assignment algorithm that satisfies a set of sufficient
conditions can be used in this procedure to guarantee gatekeeping and independence properties. The
algorithm used in [1] may fail to meet one of the conditions, namely monotonicity of weights, which
may cause it to violate the gatekeeping property. An example is given to illustrate this phenomenon.
A modification of the algorithm is shown to rectify this problem. Copyright c© 2008 John Wiley &
Sons, Ltd.
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1. Introduction

Dmitrienko et al. [1] proposed a general formulation of multiple testing problems arising in
clinical trials with hierarchically ordered/logically related multiple objectives and proposed
the so-called tree gatekeeping procedures to address multiplicity issues in these problems.
They gave a procedure based on the closure method that uses a weighted Bonferroni test
for testing each intersection hypothesis. In this note we give a set of sufficient conditions on
the weights assigned to the hypotheses in each intersection hypothesis in order to satisfy the
gatekeeping and independence properties. We show that the weight assignment algorithm used
in [1] (labelled Algorithm 1) may fail the monotonicity condition and, as a result, Algorithm
1 may fail to satisfy the gatekeeping property (the monotonicity condition was introduced by
Hommel, Bretz and Maurer [2] to obtain shortcuts to Bonferroni-based closed procedures). A
modification of the algorithm is shown to rectify this problem.

Consider n null hypotheses corresponding to multiple objectives in a clinical trial and
suppose they are grouped into m families F1, . . . , Fm to reflect the hierarchical structure of
the testing problem (e.g., F1 may contain hypotheses associated with a set of primary analyses
and the other families may include hypotheses for sequentially ordered secondary analyses).
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The hypotheses included in Fi, i = 1, . . . , m, are denoted by Hi1, . . . , Hini
with

∑m

i=1
ni = n.

These hypotheses are to be tested by a procedure that controls the Type I familywise error
rate (FWER) at a designated level α.

We consider Bonferroni-type procedures based on the raw p-values, pij , associated with the
hypotheses Hij . We allow for differential weighting of the hypotheses, with weight wij > 0
assigned to the hypothesis Hij such that

∑ni

j=1
wij = 1 for i = 1, . . . , m. The procedures are

required to satisfy the following two properties which follow from the logical relations between
the hypotheses.

Gatekeeping property. A hypothesis Hij in Fi, i = 2, . . . , m, cannot be rejected (i.e., is
automatically accepted) if at least one hypothesis in its serial rejection set (denoted
by RS

ij) is accepted or all hypotheses in its parallel rejection set (denoted by RP
ij)

are accepted. Here RS
ij and RP

ij consist of relevant hypotheses (determined by logical
relations) from families Fk for k < i.

Independence property. A decision to reject a hypothesis in Fi, i = 1, . . . , m − 1, is
independent of decisions made for hypotheses in Fi+1, . . . , Fm (i.e., the adjusted p-values
for hypotheses in Fi, i = 1, . . . , m − 1, do not depend on the raw p-values for the
hypotheses in Fi+1, . . . , Fm).

2. A General Bonferroni Tree Gatekeeping Procedure

The following Bonferroni tree gatekeeping procedure was proposed in [1] for performing
multiplicity adjustments in this problem using the closure method. Consider the closed testing
family associated with the hypotheses in F1, . . . , Fm and let H be any non-empty intersection
of the hypotheses Hij . If vij(H) is the weight assigned to the hypothesis Hij ∈ H then the
Bonferroni p-value for testing H is given by p(H) = mini,j{pij/vij(H)}. The multiplicity-
adjusted p-value for the null hypothesis Hij (denoted by p̃ij) is defined as p̃ij = maxH p(H),
where the maximum is taken over all intersection hypotheses H 3 Hij . The hypothesis Hij is
rejected if p̃ij ≤ α.

We now state the conditions on the weight vector vij(H), i = 1, . . . , m, j = 1, . . . , ni. First
we define two indicator variables. Let δij(H) = 0 if Hij 6∈ H and 1 otherwise, and ξij(H) = 0
if H contains any hypothesis from RS

ij or all hypotheses from RP
ij and 1 otherwise. The weight

vector is chosen to satisfy the following conditions.

Condition 1. For any intersection hypothesis H , vij(H) ≥ 0,
∑ni

j=1
vij(H) ≤ 1 and vij(H) =

0 if δij(H) = 0 or ξij(H) = 0.

Condition 2. For any intersection hypothesis H , the weights are defined in a sequential
manner, i.e., the subvector vi(H) = (vi1(H), . . . , vini

(H)) is a function of the
subvectors v1(H), . . . , vi−1(H) (i = 2, . . . , m) and does not depend on the subvectors
vi+1(H), . . . , vm(H) (i = 1, . . . , m − 1).

Condition 3. The weights for the hypotheses from the families, F1, . . . , Fm−1, meet the
monotonicity condition, i.e., vij(H) ≤ vij(H

∗), i = 1, . . . , m − 1, if Hij ∈ H , Hij ∈ H∗

and H∗ ⊆ H (i.e., if H implies H∗). For example, if H∗ = H11 and H = H11 ∩H12 then
H11 ⊆ H11 ∩ H12, and we require v11(H11 ∩ H12) ≤ v11(H11).
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Note that Condition 3 is not required to be met for the hypotheses from Fm.

Proposition 1. Conditions 1–3 are sufficient to guarantee that the Bonferroni tree
gatekeeping procedure meets the gatekeeping and independence properties.

Proof. Given in the Appendix.

A weight assignment algorithm that meets Conditions 1-3 is given below (it will be labelled
Algorithm 2), but any other scheme for assigning weights satisfying these conditions also may
be used. In this sense, the Bonferroni tree gatekeeping procedure proposed here is more general
than that proposed in [1].

Algorithm 2 differs from Algorithm 1 in that it does not employ normalization in the first
m−1 steps. Normalization in the final step makes the procedure α-exhaustive and hence more
powerful. Although, this last normalization can violate Condition 3 by the weights assigned to
the hypotheses in Fm, the gatekeeping properties are still maintained since these hypotheses
can be eliminated from consideration when evaluating the Bonferroni p-values of intersection
hypotheses, as the proof of Proposition 1 shows.

Algorithm 2 uses the following weight assignment scheme. It is assumed in the algorithm
that 0/0 = 0.

Step 1. Family F1. Let v1j(H) = v∗1(H)w1jδ1j(H), j = 1, . . . , n1, where v∗1(H) = 1, and
v∗2(H) = v∗1(H) −

∑n1

j=1
v1j(H).

Step i = 2, . . . , m − 1. Family Fi. Let vij(H) = v∗i (H)wijδij(H)ξij(H), j = 1, . . . , ni, and
v∗i+1(H) = v∗i (H) −

∑ni

j=1
vij(H).

Step m. Family Fm. Let

vmj(H) = v∗m(H)wmjδmj(H)ξmj(H)/

nm∑

k=1

wmkδmk(H)ξmk(H), j = 1, . . . , nm.

3. Example of Violation of Gatekeeping Property

The weight assignment scheme in Algorithm 1 may not meet Condition 3 of monotonicity of
weights. This is because the weight vij(H) at Step i (1 ≤ i ≤ m − 1) includes normalization

vij(H) = v∗i (H)wijδij(H)ξij(H)/

ni∑

k=1

wikξik(H).

Hence it is possible to get vij(H) > vij(H
∗) for H∗ ⊆ H if

ni∑

k=1

wikξik(H) <

ni∑

k=1

wikξik(H∗).

Violation of the monotonicity condition does not always imply violation of the gatekeeping
property since it is not a necessary condition, but for some configurations of the pij-values it
does so as the following example shows.

Copyright c© 2008 John Wiley & Sons, Ltd. Statist. Med. 2008; 06:1–6
Prepared using simauth.cls



4 A. DMITRIENKO, A.C. TAMHANE, L. LIU, B.L. WIENS

Consider a clinical trial with nine hypotheses that are grouped into three families, Fi =
{Hi1, Hi2, Hi3}, i = 1, 2, 3. The hypotheses are equally weighted within each family (wij = 1/3,
i, j = 1, 2, 3) and the raw p-values associated with the hypotheses are displayed in Table 1.
The logical restrictions in this multiple testing problem are defined in Table 1 using serial and
parallel rejection sets.

[Insert Table 1 here]

To see that Condition 3 is not met when Algorithm 1 is used, consider two intersection
hypotheses, H = H13 ∩ H21 ∩ H22 ∩ H23 and H∗ = H21, so that H∗ ⊆ H . We will show that
v21(H) > v21(H

∗). First note that v21(H
∗) = w21 = 1/3. Next, note that v11(H) = v12(H) =

0, v13(H) = 1/3 and so v∗2(H) = 2/3. Furthermore, ξ21(H) = 1, ξ22(H) = 0, ξ23(H) = 0 since
H13 ∈ H belongs to RS

22 and RS
23. Therefore v21(H) = (2/3)w21/w21 = 2/3.

The adjusted p-values produced by the Bonferroni tree gatekeeping procedure based on
Algorithm 1 are displayed in Table 1. We see that two adjusted p-values in F3 are significant
at the 0.05 level despite the fact that no hypotheses can be rejected at this level in F2.
This implies that the procedure does not satisfy the gatekeeping property in this example.
On the other hand, as shown in Table 1, the Bonferroni tree gatekeeping procedure based
on Algorithm 2 does not violate the gatekeeping property (there are no significant adjusted
p-values in F3 since all adjusted p-values are non-significant in F2).
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Appendix

Proof of Proposition 1. We will begin with the serial gatekeeping property and consider the
hypothesis Hij , i = 2, . . . , m, j = 1, . . . , ni. Let RS

ij denote its serial rejection set and suppose

that at least one hypothesis, say, Hrs, r < i, is not rejected in RS
ij . This means that there

exists an intersection hypothesis, say H∗

rs, that contains Hrs and whose Bonferroni p-value is
greater than α, i.e., p(H∗

rs) > α. If H∗

rs also includes Hij , this immediately implies that Hij is
not rejected. If H∗

rs does not include Hij , let H∗∗

rs denote the intersection hypothesis obtained
by eliminating hypotheses included in the last family Fm from H∗

rs. Let Hitjt
, t = 1, . . . , u,

denote the distinct hypotheses contained in H∗∗

rs , i.e., H∗∗

rs = ∩u
t=1Hitjt

.

According to Condition 2, the weights are defined sequentially and thus the weight of any
hypothesis in H∗∗

rs is equal to its weight in H∗

rs. More specifically, vitjt
(H∗∗

rs ) = vitjt
(H∗

rs)
since Hitjt

is contained in both H∗∗

rs and H∗

rs. Hence p(H∗∗

rs ) ≥ p(H∗

rs) > α. Now consider the
intersection hypothesis

H∗ = Hij ∩ H∗∗

rs = Hij ∩

(
u⋂

t=1

Hitjt

)
.
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Note that this intersection hypothesis contains at least one hypothesis in RS
ij (e.g., it contains

Hrs). Thus, by Condition 1, vij(H
∗) = 0, which implies that the p-value for H∗ is given by

p(H∗) = min
t=1,...,u

{
pitjt

vitjt
(H∗)

}
.

By Condition 3, vitjt
(H∗) ≤ vitjt

(H∗∗

rs ), t = 1, . . . , u, since Hitjt
is contained in both H∗ and

H∗∗

rs and Hitjt
is not from the last family. Therefore, p(H∗) ≥ p(H∗∗

rs ) > α. Since H∗ contains
Hij , we conclude that Hij is not rejected.

Now consider the parallel gatekeeping property. Let RP
ij be the parallel rejection set of the

hypothesis Hij , i = 2, . . . , m, j = 1, . . . , ni. Let Hirjr
, r = 1, . . . , s, denote the hypotheses in

RP
ij and suppose none of them is rejected. This implies that there exist intersection hypotheses,

denoted by H∗

irjr
, r = 1, . . . , s, such that H∗

irjr
contains Hirjr

and p(H∗

irjr
) > α. If Hij is

contained in at least one intersection H∗

irjr
, r = 1, . . . , s, then Hij is not rejected. If Hij is not

contained in any intersection H∗

irjr
, r = 1, . . . , s, then let H∗∗

irjr
, r = 1, . . . , s, be the intersection

hypotheses obtained by eliminating hypotheses included in the last family from H∗

irjr
. Since

the weights are sequentially assigned by Condition 2, the weight of any hypothesis in H∗∗

irjr
,

r = 1, . . . , s, is equal to its weight in H∗

irjr
. Hence p(H∗∗

irjr
) ≥ p(H∗

irjr
) > α, r = 1, . . . , s. Let

H∗ = Hij ∩

(
s⋂

r=1

H∗∗

irjr

)
.

Let Hktlt , t = 1, . . . , u, be the distinct hypotheses in ∩s
r=1H

∗∗

irjr
, i.e., ∩s

r=1H
∗∗

irjr
= ∩u

t=1Hktlt . To

compute the p-value for H∗, note first that H∗ includes all hypotheses from RP
ij . By Condition

1, this implies that vij(H
∗) = 0 and the p-value for H∗ is given by

p(H∗) = min
t=1,...,u

{
pktlt

vktlt(H
∗)

}
.

Further, for any hypothesis Hktlt , t = 1, . . . , u, identify the intersection H∗∗

irjr
that contains

Hktlt . Recall that the Bonferroni p-value for any H∗∗

irjr
, r = 1, . . . , s, is greater than α, which

implies that pktlt/vktlt(H
∗∗

irjr
) > α. By Condition 3, vktlt(H

∗) ≤ vktlt(H
∗∗

irjr
) since Hktlt is

contained in both H∗ and H∗∗

irjr
and Hktlt is not from the last family. Thus, pktlt/vktlt(H

∗) > α
for all t = 1, . . . , u and p(H∗) > α. Since H∗ contains Hij , this immediately implies that Hij

is not rejected.
To prove that the independence property is satisfied, one can utilize arguments used in [1]

(this proof relies on the fact that, according to Condition 2, the weights, vij(H), are determined
solely by the higher ranked hypotheses contained in the intersection hypothesis H). The proof
of Proposition 1 is complete.
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Table 1. Adjusted p-values produced by the Bonferroni tree gatekeeping procedure based on
Algorithm 1 (proposed in [1]) and Algorithm 2 (given in Section 2).

Family Null Raw Serial Parallel Adjusted p-value
hypothesis p-value rejection set rejection set Algorithm 1 Algorithm 2

F1 H11 0.003 0.009∗ 0.009∗

H12 0.011 0.033∗ 0.033∗

H13 0.038 0.114 0.114
F2 H21 0.019 {H11} 0.057 0.086

H22 0.006 {H12, H13} 0.114 0.114
H23 0.012 {H13} 0.114 0.114

F3 H31 0.007 {H21, H22} 0.036∗ 0.086
H32 0.013 {H21, H23} 0.039∗ 0.086
H33 0.023 {H22, H23} 0.114 0.114

The asterisk identifies the adjusted p-values that are significant at the 0.05 level.
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